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Dilute gas Couette flow: Theory and molecular dynamics simulation
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Explicit analytic nonlinear laws of heat transport and of viscous flow are derived from Grad’s approximate
solution of Boltzmann’s equation and they are shown to describe quite well the observations made in molecular
dynamics simulations. With this aim a planar Couette flow is studied analytically and by means of microscopic
molecular dynamics techniques for the case of a bidimensional gas of hard disks. The fluid develops a
nonuniform temperature profile, shows a non-Newtonian behavior, and there is a heat current which obeys
Fourier’s law with a tensorial shear rate-dependent thermal conductivity.@S1063-651X~97!07507-7#

PACS number~s!: 05.20.Dd, 47.50.1d, 51.10.1y
a
er
d
as
an
oc
um
on
f

o
y
a

o

a
he

u
-
-

e
n’
ich

li-
.
o
ity

s

fi-

en

ent

lv-
lar,
ion
-

rt
zed
-
ons

ults

-
eing
e a

p-

s
o-
-
ain
ac-
to
e

on,
n-
nt
nd
I. INTRODUCTION

Transport in dilute systems far from equilibrium is not
simple hydrodynamic problem. Even though the Navi
Stokes equations are the main tool to study the hydro
namic behavior of fluids, behind these equations is the b
assumption that changes in a fluid take place smoothly
slowly so that the system can be considered in a state of l
thermodynamic equilibrium and the transport of moment
and energy in it is described by linear constitutive equati
~Newton’s and Fourier’s laws! which relate the gradients o
the standard hydrodynamic variables~forces! with the mo-
mentum and heat flux vectors. When the condition of smo
or slow variation is not fully satisfied the fluid behavior ma
deviate from the predictions of standard hydrodynamic c
culations: the linear relation between theforces and the
fluxes breaks down and the constitutive equations have t
extended beyond the linear regime.

Kinetic theory, on the other hand, gives a more fund
mental theory but it has been well developed only for rat
dilute systems where Boltzmann’s~or Enskog’s! equation
can be justified. The fundamental equation is that of Lio
ville or equivalently the Bogoliubov-Born-Green-Kirkwood
Yvon ~BBGKY! hierarchy of equations for partial distribu
tions.

Within the range of validity of Boltzmann’s equation, th
challenge is to find approximate solutions. Boltzman
equation is complex enough that it is not obvious wh
approximate scheme should be used:~1! Chapman-Enskog
method is perhaps the one most widely used,~2! the
Bhatnagar-Groos-Krook~BGK! approximation that, in a
way, linearizes Boltzmann’s equation modifying the col
sion operator, or~3! Grad’s momentum expansion method

The Chapman-Enskog method is an expansion ab
equilibrium in gradients of the hydrodynamic fields: dens
n, velocity vW , and temperatureT. The first order gives Eul-
er’s ideal hydrodynamics and the second order provide
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version of Navier-Stokes equations withlinear transport
equationsand explicit expressions for the transport coef
cients@1,2#. The BGK approximation@3# deals with a kinetic
equation where Boltzmann’s collisional operator has be
replaced by a simpler oneJ@ f f #→nn ( f eq2 f ) and it has
been used to deal with the problem at stake as we comm
below.

Grad’s method@4# uses a self-consistent approach invo
ing higher momenta and no gradients of them. In particu
Grad worked out in detail the case when the distribut
function f is written in terms ofn, vW , T, and also the trace
less and symmetric part of the pressure tensorpi j , and the
heat flux vectorqW . From Grad’s method nonlinear transpo
equations emerge naturally. In connection with generali
hydrodynamics see@5,6#. For a comparison with phenom
enological derivations in the case of higher order correcti
to the Navier-Stokes equations see@7#.

Presently it is possible to get semiexperimental res
from microscopic computational simulations usingmolecu-
lar dynamics~MD! techniques in which the microscopic in
teractions are part of the data and they are not bound to b
realistic. MD simulations—in the sense of this paper—ar
computational technique which traces the microscopicNew-
tonian time evolution of a system ofN classical particles in
the phase space of all of them.

MD gives extra meaning to another fundamental a
proach: the linear response Green-Kubo method~GK method
from now on! for the calculation of transport coefficients a
time integrals of time correlation functions of certain micr
scopic currents@8#. With the advent of computational phys
ics it became possible to apply the GK method to obt
estimates of the transport coefficients for particular inter
tion laws. Simulations and these calculations led not only
the conviction that there are long time tails of the GK tim
correlation functions implying thedivergence of the GK
transport coefficients in two dimensions~2D! but also, for
the 3D case, to numerous specific results for self-diffusi
mutual diffusion, bulk and shear viscosity, and thermal co
ductivity of model gases and liquids, forming an importa
basis for the dominant interpretation of both the theory a
phenomenology of transport.
489 © 1997 The American Physical Society
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490 56DINO RISSO AND PATRICIO CORDERO
In particular, the divergence of the 2D transport coe
cients has been widely accepted@9#. They are expected to
diverge because the corresponding correlation integrals
believed to decay in 2D asO(1/t). On the other hand, recen
high precision simulations as in@10–14# for short range
steep repulsive potential~hard disks in@14#! produced what
looks like size-independent transport coefficients fairly clo
to the predictions derived from the 2D Enskog theory@15#.
No divergence is detected. The reproducible finite nature
viscosity in @10–12# and thermal conductivity in@13,14#
could be made understandable if the coefficients give ind
tions of their divergence for systems so large that the limi
beyond present computational possibilities. Certainly the
derivation of divergence fails to hold forfinite systemswith
finite steady state nonequilibrium fluxes. One should fin
bridge from finite to infinite systems, a goal that is beyo
our present scope.

The Couette flow of a dilute system of Maxwell particl
under strong strain has been studied theoretically using
BKG equation@16,17#. In @16# the momentum flux turns ou
to be a nonanalytic function of the shear rate and the h
current obeys a Fourier law with a conductivity that depen
on the shear rate as well. In@17# the authors introduce a
external nonconservative force that creates the heat
There is no temperature gradient, a drag force is include
preserve the stationary state and it is shown that shear af
the heat flux. The authors present explicit expressions for
shear-dependent thermal conductivity tensor. The
diagonal terms imply a component of the heat current nor
to the temperature gradient as a second order effect
present in the linear constitutive hydrodynamic equations

We have performed MD simulations of a planar bidime
sional Couette flow for a system of hard disks between
flat parallel walls that move with velocitiesv0 and 2v0,
respectively. Particles obey straight Newtonian dynam
and, in particular, the production of heat is only dissipa
through the moving walls which are kept at a fixed tempe
ture T0. Careful local measurements of the hydrodynam
fields show that our system of hard disks does not o
linear transport equations. Because the system heats up
center of the Couette channel we observe, as expected, a
flux with a component perpendicular to the walls which a
counts for the heat being dissipated through the walls.
we also observe alongitudinal heat current, namely, a hea
current parallel to the isotherms.

The aim of this paper is to show that there is an appro
mate nonlinear explicit analytic answer to the problem
momentum and heat transport in the context of a planar C
ette flow. This answer is then validated comparing the a
lytic results with our MD simulations for the gas of ha
disks.

What we have done is to apply the hydrodynamic eq
tions that stem from Grad’s formalism to solve Boltzmann
equation without making any further approximations. Gra
formalism adds to the standard hydrodynamic balance e
tions of mass, momentum, and energy, extra balance e
tions associated to the pressure tensor and the heat cu
These extra dynamical equations are nonlinear and take
place of the usual constitutive transport equations. For
planar stationary Couette flow of hard disks we have b
able to integrate this set of dynamic equations in a clo
-
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form. In particular, we have derived the density, veloci
and temperature fields as well as explicit forms for the pr
sure tensor field and the heat current.

With all this information we have been able to deriv
effective shear-dependent analytic expressions for the vis
ity and thermal conductivity coefficients. In particular, w
show that the observed heat current vector is fairly well
scribed by our analytic results and the pressure tensor sh
an excellent agreement between theory and observati
Our simulations were done with our own algorithms as d
scribed in@18# and using the precise measurement routin
described in@19#.

We have already reported simulations of sheareddense
hard disk fluids in@19,20#. In them too a non-Newtonian an
‘‘non-Fourier’’ behavior is observed in the sense, for e
ample, that a heat flux not orthogonal to the isotherms
observed.

In Sec. II the conditions under which the simulations we
performed are described in detail. Section III describ
Grad’s general formalism and next specializes it to the la
nar Couette flow under study, getting a set of coupled diff
ential equations for the shear rate, the temperature pro
and the two components of the heat flux. In it we find t
solution of these differential equations which show, in p
ticular, nonlinear equations for heat conduction and of v
cous flow. In Sec. IV there is a comparison of the previo
theory with the observed simulated system.

II. THE SYSTEM AND SIMULATIONAL CONDITIONS

The system of hard disks, of massm, is inside anL3L
square box. The vertical walls~along theY direction! are
treated as periodic boundaries, the collisions among parti
are perfectly elastic, and the collisions with the hard horizo
tal walls ~along theX direction! are such that they impose
temperatureT0 on the fluid as well as a velocityv0 at the top
wall and2v0 at the bottom wall. To do that the velocities o
the particles after each hard wall collision are chosen from
velocity distribution f (cW )}exp$2(m/2T0)@(cx6v0)

21cy
2#%.

Here and in the following temperature is measured in ene
units so that Boltzmann’s constant iskB51. The origin is
chosen in the middle of the channel so that the coordin
y varies from2L/2 to L/2.

The control parameters of the simulations were the nu
ber of particles,N52539 orN57680,v0, and the bulk num-
ber densityn̄5N/L2. The tangential velocityv0 of the upper
and lower walls was in the rangev050.25AT0 /m to
128.0AT0 /m.

In every simulation the system was relaxed for about
thermal diffusion timestdiff before local time averages of th
main momenta of the distribution (n,vW ,T,pi j ,qW ! were taken,
in some cases for as long as 4000tdiff . The order of magni-
tude of tdiff comes from the energy balance:tdiff;L2/k0
wherek0 is taken to be the ideal gas thermal diffusivity.
one tdiff each particle suffers about 100 particle collisio
whenN52539 and about 300 whenN57680.

One has to bear in mind though that, for finite syste
such as the present one, there are velocity and tempera
jumps which cannot be neglected, implying that the limits
T(y) andvx(y) asy→6L/2 do not give exactly the value
externally imposed.
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56 491DILUTE GAS COUETTE FLOW: THEORY AND . . .
Calling s the diameter of the disks, the bulk densi
n̄54rA /ps2 was fixed so that the fraction of area cover
by the disks was 1%~area densityrA50.01). With this
choice the nonideal corrections to the equation of state
less than 2%.

Throughout this paper some quantities will play a partic
larly important role, among them the free flight timet, the
adimensional shear rateg, an adimensional measure of th
range of the wall effects,B, and a small adimensional pa
rameterg0 ~the externally imposed adimensional shear! de-
fined in such a way that it would coincide withg if the strain
were small and uniform (v0;0),

t~y!5
1

2sp~y!
AmT~y!

p
, ~1!

g~y!5t~y!vx8~y!, ~2!

B5
l

L
5

A2p

8ArAN
, ~3!

g05
2v0 t0
L

5
4B
Ap

A1

2
mv0

2

T0
, ~4!

wherep is the hydrostatic pressure,l the ideal gas mean
free path,l 5ps/8A2rA , t0 the strain-free mean free fligh
time, t051/(2s n̄ )Am/(pT0), and the prime indicates de
rivative with respect toy. Most of our results are presente
for situations whereg'0.06.

The number of disks was chosen so thatB is small enough
to keep the boundary effects constrained to a small frac
of the system and guarantee that far from the walls the fl
has a hydrodynamic behavior. For our choicerA50.01, this
implies B50.062, L5446.6s for N52539 andB50.036,
L5776.7s for N57680.

III. BALANCE EQUATIONS
AND BOUNDARY CONDITIONS

A. General theoretical framework

For two dimensional dilute gases Grad’s distribution is

f ~rW,cW ,t !5S 11
1

nT2F SmC2

4T
21DCW •qW 1

1

2
p:CW CW G D f 0 ,

~5!

whereqW is the heat flux vector,p is the traceless and sym
metric part of the pressure tensor, andf 0 is Maxwell’s local
equilibrium distribution

f 0~rW,cW ,t !5
nm

2pT
expF2

mC2

2T G , ~6!

cW is the microscopic velocity,vW (rW,t) is the hydrodynamic
velocity, andCW (rW,t)5cW2vW (rW,t) is the peculiar velocity.

From Boltzmann’s equation it is possible to derive b
ance equations for the momenta of the distribution as a t
book exercise@21#. The first momenta give rise to the sta
re

-

n
id

-
t-

dard hydrodynamics equations: the mass, momentum,
energy balance equations. The balance equations assoc
to the following momenta lead to equations that take
place of the constitutive equations but, strictly speaking, th
are dynamic equations forpi j andqW .

We have reconstructed Grad’s derivation of these ex
approximate equations, for the bidimensional case of a ga
hard disks, obtaining

]pi j
]t

1
]

]xk
~vkpi j !1

1

2S ]qi
]xj

1
]qj
]xi

2d i j
]qk
]xk

D1pr j
]v i
]xr

1pri
]v j
]xr

2d i j prs
]vs
]xr

1pS ]v i
]xj

1
]v j
]xi

2d i j
]v r
]xr

D1
1

t
pi j

50 ~7!

and

]qk
]t

1
]

]xr
~v rqk!1

3

2

]vk
]xr

qr1
1

2

]v r
]xk

qr1
1

2

]v r
]xr

qk1
T

m

]pkr
]xr

13pkr
]

]xr

T

m
2
pkr
r

]Prs

]xs
12p

]

]xk

T

m
1

1

2t
qk50, ~8!

where t was defined in Eq.~1! and p is the hydrostatic
pressure. The hydrodynamic equations for the dilute 2D s
tem of hard disks correspond to the standard balance e
tions plus Eqs.~7! and~8!. In the final results it is convenien
to replace pi j in favor of the complete pressure tens
Pi j5pi j1pd i j .

As an illustration of their use consider the first equatio
Neglecting time variations and all gradients except for
velocity gradient yields

pi j52h0 S ]v i
]xj

1
]v j
]xi

2
]v r
]xr

d i j D , ~9!

where the shear viscosityh0 for hard disks istp which can
be reduced, using Eq.~1!, to the standard expressio
h05(1/2s)AmT/p. In a similar fashion one can find, from
Eq. ~8!, the expression for the thermal conductivi
k054tp/m.

B. The laminar flow case

Under conditions of laminar Couette flux and after tim
much larger thantdiff the system is in a stationary regime an
the flux presents translation invariance along the Cou
channel. All quantities of interest are either uniform or th
depend solely on the transversal coordinatey. The hydrody-
namic velocity has a unique nonvanishing compon
vx(y). The mass balance equation is identically satisfied

To compare our simulational results with theory the fo
lowing considerations are made.~i! Grad’s solution cannot
be expected to be valid near the boundaries (y56L/2),
where the interaction with the walls plays an important d
torting role, particularly at low densities.~ii ! Assuming that
Grad’s solution gives the correct behavior for the system
the bulk, the expressions should reproduce the simulatio
results using corrected values forv0 andT0.
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492 56DINO RISSO AND PATRICIO CORDERO
From the momentum balance equation it follows that b
Pxy andPyy are uniform. Hence, the balance equations~7!
for Pxx andPyy yield two algebraic relations,

p~y!5Pyy2
3

2
g~y!Pxy , Pxx~y!5Pyy23g~y!Pxy ,

~10!

whereg(y) is the adimensional shear rate defined in Eq.~1!.
The rest of the balance equations yield

t

2
qx852Pxy2gPyy , ~11!

qx13gqy52
6t

m
PxyT8, ~12!

gqx1qy52
3t

m
PxyTg82

t

m
~4Pyy13gPxy! T8, ~13!

tqy852gPxy . ~14!

The primes indicate derivatives with respect toy. The above
system of equations has as unknowns the fieldsg,T,qx ,qy .
The boundary conditions are

T~6L/2!5T0 , qx~0!50 , qy~0!50 ~15!

plus two integral conditions, one that follows simply fro
*n dx dy5N and the second that states that the veloci
6v0 at the boundaries are known,

E
2L/2

L/2 p~y!

T~y!
dy5

N

L
and E

2L/2

L/2 g~y!

t~y!
dy52v0 . ~16!

The ideal gas equation of state,p5nT, was used in the firs
integral expression while in the last expression the integr
is vx8 .

C. Expansions

At first glance one cannot hope to find a closed analy
solution to the above system of differential equations the
fore we expand in terms ofg0 defined in Eq.~4!,

g~y!5g01g0
3h3~y!1g0

5h5~y!1•••. ~17!

There is a symmetry related to inverting the sign ofv0 ~or
g or g0). It is easy to see thatT, qy , andPyy have to be even
in g0 while qx andPxy have to be odd functions ofg0.

Sinceqy vanishes for zero strain its expansion begins w
a termO(g0

2). Similarly, sinceT8 vanishes for zero strain
thenT5T01O(g0

2). From this and Eq.~12! it follows that
qx is O(g0

3). Finally since for zero strain the compone
Pyy coincides with the hydrostatic pressure and the pres
is nT then the formPyy5nT01O(g0

2) is used.
With all the above considerations we have solved the s

tem of equations and their boundary conditions in a con
tent way using expansions up tog0

8. All the algebraic ma-
nipulations were done using the symbolic languageMAPLE.
To our surprise the coefficientshk that appear in the expan
sion ofg turn out to beindependent of yas if the shear rate
h

s

d

c
-

re

s-
s-

in the bulk of the system were uniform. The conclusion th
is that within the theoretical picture constructed from Gra
2D eight momentum distribution function~5! ~for the bulk of
the system! it is reasonable to assume thatthe shear rateg is
uniform. The nonuniformity observed in Fig. 1, when th
externally imposed strain is high, may be due to bound
effects and not to a deviation of the theory in the bulk whe
Grad’s distribution should be good.

Regarding the last point it is necessary to bear in m
that Grad’s approximate solution~5! neglects the contribu-
tion from higher momenta which will become important
the shear rate is sufficiently large. The higher balance eq
tions ~7! and ~8! are implications of Grad’s solution wher
again the contributions from higher momenta are con
tently dropped. We have not worked out the necessary
malism to estimate up to which value of the shear rate
present approximation should be expected to be valid.

The Reynolds number Re5v0L/n0, wheren0 is the ideal
gas kinematic viscosity, reduces in the present case
8rANg which for the typical values we use amounts to R
up to 20 (N52539) and up to 60 (N57680). However,
since for fixed values ofv0 andT0 the variablesg0 or g get
smaller for larger systems the higher order corrections wo
be important only for not too largeN but, according to Eq.
~17!, g;O(1/AN), implying the Reynolds number increase
asAN with N.

D. Closed solution when the shear rate is uniform

First we are going to derive expressions where the co
dinate y does not appear explicitly. They are obtained
simple algebraic manipulations of our equations after
termg8 has been erased.

Sinceg does not depend ony both Eqs.~12! and ~13!
have right hand sides proportional tot T8 with constant co-
efficients. From Eq.~12! follows an expression forT8 which
is replaced in Eq.~13! to get an expression forqx propor-
tional toqy . Thisqx is used in Eq.~11! to get an expression
for qy* which is equated to the expression forqy8 in Eq. ~14!.
The result is an algebraic expression forPxy /Pyy and if this
Pxy is replaced back in the expression forqx an expression
for the ratio between the two components of the h

FIG. 1. Profile of the shear rateg for a system withN57680,
rA50.01, andv051.4AT0 /m. The horizontal line represents th
theoretical valueg50.066 86960.000 062 explained in the main
text. Away from the walls the discrepancy is about 0.9%.
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56 493DILUTE GAS COUETTE FLOW: THEORY AND . . .
current follows. The two ratios turn out to be

Pxy

Pyy
5
413g22AD

3 ~423g2!g
'2g1

9

4
g31•••, ~18!

qx
gqy

52
18 ~22g2!

423g21AD
'2

9

2
19g22

135

4
g41•••,

~19!

whereD5161120g2263g4. Observe that Eq.~19! implies
that there is a heat flux currentqx along the Couette channel
For shears as small asg50.065 Eq.~19! predicts a heat
current which can be as large as 30% the size of the tr
versal heat currentqy , as indeed is observed in our simul
tions described in the next section.

(a) Shear viscosity. From the expression forPxy /Pyy and

p5Pyy2
3
2gPxy it is direct to obtain that the shear viscosi

h[2Pxy /vx8 is

h

h0
5

8

15g2141AD
'12

15

4
g21

297

16
g41•••, ~20!

whereh0 was already defined below Eq.~9!. The expression
above predicts an effective shear thinning which is compa
with our observations in Fig. 4. The agreement is excell
as we show in the next section.

(b) Thermal conductivity tensor.Once the term withg8
was eliminated from Eq.~13!, the use of that equation an
Eq. ~12! directly leads to expressions

qy52kyy T8 and qx52kxy T8, ~21!

with

kyy5
12 3

4 gPxy /Pyy

123g2 k0

and

kxy5
23g1~3Pxy/2Pyy!~ 12 3

2 g2!
123g2 k0 ~22!

but since the ratioPxy /Pyy was already determined in Eq
~18! it follows that

kyy
k0

5
8

4233g21AD
'11

9

4
g21

153

16
g41•••, ~23!

kxy
k0

5
9g426g2181~9g222!AD

48g2~123g2!
'2

9

2
g2

9

8
g31•••.

~24!

In the above results there appears no explicit depende
on the coordinatey. Notice, however, thath0 and k0 are
proportional to AT(y). The problem of determining the
transport coefficients themselves has been reduced to d
mining h0 andk0 and therefore to determining the temper
ture profile.

(c) The temperature profile.If we go back to the original
equations and notice thatt depends ony only throughAT
s-

d
t

ce

ter-
-

then Eqs.~12! and ~13! imply that both heat currentsqk are
proportional to (T3/2)8. Hence both Eqs.~11! and~14! imply
that AT(T3/2)9 is a constant and an expression for the te
perature profile is easily obtained.

TT91
1

2
T821K50, ~25!

which can be integrated fory in terms ofT,

6A2K y5T ATmax2T

T
1TmaxarctanATmax2T

T
,

~26!

where

A2K5
A81g42264g21161~15g214! AD

423g2
ApsgPyy

'S g2
3

2
g32

9

8
g52

27

32
g71••• D A2psPyy . ~27!

A2K is real in the interval 0,g2, 1
3. The6 on the left hand

side of Eq.~26! is natural because the symmetry of the sy
tem implies that under laminar conditions the temperature
y and2y are the same. In practice to integrate Eq.~25! we
imposed that at the center of the channelT(0)5Tmax and
(dT/dy)y5050 even though we do not know yet the valu
of Tmax. In Fig. 2 there is a comparison of the observ
values ofT8 and the corresponding profiles obtained fro
the above expressions. Comments are deferred to Sec.

What remains now is to connect the uniform fieldsPyy ,
Tmax, andg with the control parametersv0 andT0 ~or rather
to adimensional parametersg0 andB) and the parameters o
the system (rA ,s,L,N, . . . !.

(d) Using the integral boundary conditions.From the
knowledge ofT(y) it is quite easy to actually make the in
tegrals that appear in the integral boundary conditions,
example,*dy/T54/A2K arctanA(Tmax2T0)/T0.

The two integral boundary conditions~16! combined ren-
der

ATmax2T0
T0

5
Ap

4

g0

BA 123g2

419g21AD

5
g0

B
Ap

8 S 123g21
27

4
g41••• D ~28!

and

ATmax2T0
T0

5
g0

g
arctanATmax2T0

T0
. ~29!

Using Eq. ~28! on both sides of Eq.~29! one hasg as a
function of the external parametersg0 andB. Fixing B one
can plotg as a function ofg0. Once this is done Eq.~28!
gives Tmax in terms ofT0, g0, and B. Since the previous
equations are implicit such plots have to be constructed u
numerical methods.
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When 1
2mv0

2!T0 (g→0) Eq. ~28! leads to
A(Tmax2T0)/T0'Apg0 /(8B). On the other hand, the larg
shear limit cannot be reliable since in the present approa
is being assumed that the shear rate is not too large. Still,

FIG. 2. At top T8(y) for two systems with rA50.01:
N52539,g520.063, andN57680,g520.058. The theoretica
profile T8 for both cases are indistinguishable in this figure. T
smaller system clearly differs from the theoretical profile. At b
tom two profilesT8(y) for N57680 but differentg. Away from the
walls theory and observations coincide. The temperature gradie
scaled with the square root of 2K.
it
is

limit corresponds to neglectingT0 in front of Tmax and Eq.

~28! leads toTmax'
1
2mv0

2 and g→g`[(p/4)(1/A2NrA)
suggesting that—for a given system (N fixed!—g does not
grow indefinitely. Qualitatively our simulational results su
gest thatg saturates, see Table I. Understandably though,
observed asymptotic value thatg seems to have is not clos
to the previousg` .

From the conditionT(6L/2)5T0 follows an expression
for Pyy which can be reduced to

Pyy5
NT0
L2

423g2

429g21AD
S 11

g0

g
1
Tmax2T0

T0
D . ~30!

The expression for (Tmax2T0)/T0 given in Eq.~28! can be
replaced in Eq.~30! to have an explicit expression forPyy in
terms of the shear rateg. In the small shear rate limit the las
bracket tends to 2 and the middle fraction tends to1

2, making
Pyy tend to the hydrostatic pressurep5 n̄T0 as it should.
This expression ofPyy in terms ofg can be replaced back in
Eq. ~27! and get an expression forA2K.

IV. OBSERVATIONS VERSUS THEORY

A. Generalities and boundary effects

To measure the hydrodynamic behavior of the system,
box was divided inMx3My rectangular cells. In each ce
the time average of the first momenta of the distribution w
made. For the system withN57680 particles the choice wa
Mx5My520, which corresponds to about 19.2 disks per c
and in the case withN52539 it wasMx5My523 or about
4.8 disks per cell. Units are chosen so that the mass of e
particle ism51, their diameter iss51 and time units such
that the temperatureT0 at the horizontal walls, measured i
energy units (kB51), is fixed to beT051.

To measure the number densityn, the hydrodynamic ve-
locity vW , and the temperatureT the algorithm carries in each
cell an exact integration over time of the number of dis
total momentum, and total kinetic energy~densities!. To

is
re
s

TABLE I. Simulational values ofPxy , Pyy , andg versus the imposed tangential velocityv0. In the third
column are the values of the shear rate obtained from Eq.~18!. The averages for the uniform quantities we
taken in the whole volume of the system. Thesimulational value of g is an average over four value
measured at the central part of the fluid. The numbers in square brackets denote powers of 10.

v0
AT0 /m

g sim. g theor.
Pxy

T0 /s
2

Pyy

T0 /s
2

0.2 0.010285 0.010370 0.00014067@-11# 0.01351166@28#

0.8 0.040127 0.040437 0.00058064@26# 0.01439966@28#

1.0 0.049442 0.049547 0.00073564@26# 0.14918061@211#
1.4 0.066253 0.066869 0.00107961@26# 0.01629761@27#

2.0 0.087807 0.088711 0.00166864@26# 0.01912965@27#

8.0 0.166661 0.169997 0.01423762@25# 0.08890961@27#

16.0 0.184631 0.189379 0.05096763@25# 0.28946561@26#

32.0 0.192817 0.198525 0.19372262@24# 1.05636162@26#

56.0 0.195729 0.202106 0.57858966@21# 3.10714464@25#

128.0 0.199432 0.205384 2.96689065@23# 15.7160862@24#

256.0 0.201661 0.207323 11.6985862@22# 61.4770863@24#
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measurecurrents, namely, the pressure tensorPi j and the

heat currentqW , it is necessary to measure separately the
netic and the collisional contributions. The kinetic contrib

tions come from the fluxes using the peculiar velocityCW ,
namely, the fluxesmCiCj and

1
2mC2Ck that take place each

time a disk enters or leaves a cell. Regarding the collisio
contributions we estimate, using Gass’s expressions for
transport coefficients@15# for hard disks~linear constitutive
equations! that they will be of the order of 2%.

Most quantities show boundary effects. The temperat
field shows isotherms parallel to the flow but—as predic
by Eq.~19!—the heat flux is not orthogonal to them: it ben
in the direction of the mass flow. The equation of state
well satisfied across the fluid, including the regions near
walls. Observed discrepancies with the ideal gas equa
were always below 2% and if Henderson’s equation of s
@22# is used the discrepancies are below 0.1% for
N57680 system. The componentsPxy andPyy of the pres-
sure tensor show no boundary effects butPxx does.

Taking advantage of the translation invariance in theX
direction, it was natural to take horizontal averages of
observed cell results getting in this way smooth vertical p
files for the observed hydrodynamic fields.

As mentioned above Eq.~10!, Pxy and Pyy should be
uniform and this is what we in fact observe. From the ho
zontal averages ofPxy andPyy , for N52539 particles, their
values at eachy are obtained with errors of less than 0.6
and less than 0.07%, respectively. For the larger system
errors are still smaller. An additional vertical average ov
each of the previous profiles produce a variance of ab
0.1% for Pxy and of about 0.008% forPyy whenN52539
and smaller whenN57680. In this sense it can be stated th
these two quantities are independent ofy as hydrodynamics
predicts. In Table I we have summarized our results for
system withN57680 andrA50.01.

Even though we derived that up to eighth order ing0 the
adimensional shear rateg is uniform, the simulations for
shear rates as small asg;0.06 show a wide region near th
boundaries of the channel whereg @evaluated through Eqs

~1!, ~2!, andp5 1
2TrP# noticeably varies withy. In the central

regiong is quite uniform as seen in Fig. 1.
From these considerations it is clear that the theoret

framework presented in Sec. III needs a reassessmen
cause, even though the differential equations are expecte
be valid in the bulk, this is not true near the boundaries. T
closed expressions found in Sec. III D should be expecte
fit well away from the walls and the values associated to
boundary conditions (T0,v0) should be adjusted to make th
fit.

B. Results fits

To adjust the observed results we proceeded as follow
The shear rateg. Since bothPxy andPyy are independen

of the coordinatey within a very small error, vertical aver
ages of these two quantities were taken and from them
Eq. ~18! an effective value for the shear rateg is obtained.
The fourth and fifth columns of Table I show the measu
values ofPxy , Pyy . In the second column is the value o
g evaluated using Eq.~1! for the four values measured at th
i-
-
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center of the channel while in the third column is the effe
tive theoretical value ofg. For v0,8AT0 /m the discrepan-
cies are less than 1%.

Figure 1 shows the adjustedg and the observed shear ra
profile. The figure corresponds to the caseN57680 and
v051.4AT0 /m. Away from the walls the adjusted value o
g is g50.066 86960.000 062 which differs from the ob
served value in about 0.9%. Similar differences are obtai
for other values ofv0. In the extreme casev05128AT0 /m
theg profile is less uniform and the values in the central p
of the box and border differ by about 4% and the differen
between the simulational value ofg in the central zone and
the theoretical value reaches a 3%.

The constantA2K is evaluated from Eq.~27!.
The temperature Tmax and T(y). Tmax was obtained mak-

ing a mean square fit of Eq.~26! adjusting both the values o
Tmax and again the value ofA2K. Since the temperature
profile shows a strong and wide boundary effect different
were made eliminating one, two, three, etc. points on e
extreme and finally an extrapolation was made. The value
A2K obtained in this way differs from the one obtained fro
Eq. ~27! by a few percent.

The previous fit yields what we will be calling the theo
retical temperature profileT(y) from now on. It coincides
with the observedT profile only in the central region and
fails badly away from it. From the theoretical temperatu
profile T(y) follows its gradientT8(y). In Fig. 2 there is a
comparison of the latter with the observed values. TheT8
profile agrees quite well away from the walls when the s
tem is larger (N57680).

The heat currents qy and qx . Figure 3 compares the
observed heat flux profiles with the theoretical profiles giv
in Eq. ~21! for the caseN57680,g'0.067. Crosses indicat
the simulational values of the transversal heat currentqy .
Notice thatqy , as seen in Eq.~21!, obeys a Fourier type o
law with an effective conductivity that depends on the sh
rate. The agreement with the predicted values ofqy is excel-
lent. Rhombuses are used to show the component of the
flux currentqx along the isotherms. It is seen that, in the la

FIG. 3. The theoretical and observed profiles of the heat curr

qW for a system of N57680. The theoretical g is
g50.066 86960.000 062. The transversal heat currentqy ~with
crosses! shows excellent agreement with the theory, while t
agreement between the theoretical and observed profiles of the
gitudinal heat currentqx ~with rhombus! is fair. Both currents are
scaled with the factorT0AT0 /m.
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TABLE II. Simulational viscosityh/h0 and conductivitieskxy /k0, kyy /k0 versus the simulationalg for
theN57680 system.

v0
AT0 /m

g sim. h/h0 kxy /k0 kyy /k0

0.2 0.010285 1.012652 20.031860.014
0.8 0.040127 1.001918 20.155760.007 0.955060.007
1.0 0.049442 0.993623 20.198260.020 1.119060.040
1.4 0.066253 0.993362 20.269960.006 1.021060.015
2.0 0.087807 0.981536 20.345960.014 1.056060.040
8.0 0.166661 0.924016 20.536060.006 0.853460.005
16.0 0.184631 0.910397 20.559960.003 0.816660.006
32.0 0.192817 0.905053 20.573460.002 0.799560.005
56.0 0.195729 0.903687 20.624860.027 0.856960.046
128.0 0.199432 0.898152 20.579060.010 0.788760.008
256.0 0.201661 0.894963 20.578260.008 0.785760.004
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case, the agreement is fair. ForN52359 theqx fit is rather
poor ~the boundary effects propagate deeper into the syst!
and we did not make the corresponding plot. In general
boundary effects for a fixedg are seen to be smaller fo
larger systems as the definition~3! of B suggests.

The integral boundary conditions.To check the implica-
tions of the integral boundary conditions we proceeded
determine the value ofg that follows from Eqs.~28! and
~29!. Taking the system withN57680,v051.0AT0 /m and
using forT0 the value obtained from the theoretical profil
we obtaing50.049 537 8 while the value ofg derived from
Pxy /Pyy is g50.049 546 8 which is better than what on
could expect.

In the case of smallg, the expression~28! predicts via
Eqs. ~3! and ~4! a temperature differenceTmax2T0
'(p/64)T0(g0 /B)2, implying that, becauseB is small, there
is a significant heating of the central part of the channel
particular, for the caseg;0.049 54~which corresponds to
v051.4AT0 /m) Eq. ~28! predicts (Tmax2T0)/T0'0.125
while we observe 0.2 and forg;0.066 25 ~which corre-
sponds tov051.0AT0 /m) Eq. ~28! predicts 0.245 while we
observe 0.29. The discrepancies may be due to boun
effects.

FIG. 4. The predicted viscosity ratioh/h0, versusg showing
shear thinning, is compared with the viscosity ratio derived direc
from the observations (N57680).
e

o

n

ry

The shear viscosity.Using the observed values ofvx8 and
Pxy at different points in the channel and in different sim
lations it is possible to extract a simulational value for t
shear viscosity ratioh/h0 ~see Table II! which turns out to
follow quite well the value given in Eq.~20! within less than
1% in a range ofg up to g50.2 ~see Fig. 4!. We have not
enough data to derive error bars but all points are seen to
close to the theoretical curve.

The thermal conductivity coefficients.Similarly, the ob-
served components of the thermal conductivity tensor
compared with the expression implied by Eqs.~23! and~24!.
From the observed values forqx , qy , andT8 we have de-
rived profiles for the conductivities kxy52qx /T8,
kyy52qy /T8 after eliminating two or three data points from
the borders and four noisy points from the central part wh
T8,qx ,qy are too small. An extrapolation of the profiles o
kxy /k0 and kyy /k0 at y50 using a parabolic fit yields the
simulational values presented in Table II for different valu
of the simulationalg.

For kxy /k0 the agreement is quite good ifv0<2AT0 /m
(g<0.087 807) whenN57680~see Fig. 5!. For kyy /k0 ~see
Fig. 6! the statistics are rather poor. The results show a
havior consistent with the theory for small values of t

y
FIG. 5. The predictedkxy /k0 conductivity ratio versusg is com-

pared with the conductivity ratio derived directly from the observ
tions (N57680).



n

rg
ry
e
ti
m
no
e
t
re
re

ive
o
a
th
n
es
w
n
nd
le
in
s
. I
th
u

-
li-
h
r
b
S-

3D
en-
are

ave

lds

rns

in

tion
ame

a
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shear rate, but we do not have enough data to make stro
statements.

Our data are less noisy when the shear rate gets la
(v0.2.0AT0 /m) but in that case the discrepancy with theo
is substantial both forkxy andkyy . There are many possibl
sources for these discrepancies. The higher balance equa
~7! and ~8! are derived, according to Grad, neglecting ter
that involve still higher momenta which possibly are
longer negligible at such high shear rates. The boundary
fects, on the other hand, are also more complex since
discontinuities of the hydrodynamic fields at the walls a
related to their own gradients. This seems particularly
evant in the case of the temperature field.

In summary, we have used Grad’s momentum to der
from Boltzmann’s equation, a hydrodynamics for the gas
hard particles. This hydrodynamics comprises the stand
hydrodynamic equations plus dynamic equations for
pressure tensor and the heat current. Hence the only co
tutive equation is the equation of state. When applying th
equations to the case of a planar Couette laminar flow
find a closed solution which includes the description of no
trivial temperature profile, heat flow both orthogonal to a
along the isotherms. The solution is in general an excel
description of what is actually seen, away from the walls,
our molecular dynamics simulations with systems of le
than 104 particles subjected to extreme shear conditions
particular, we have found closed analytic expressions for
effective nonlinear transport coefficients for this planar Co
ette flow.
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FIG. 6. The predictedkyy /k0 conductivity ratio versusg is com-
pared with the conductivity ratio derived directly from the observ
tions (N57680).
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APPENDIX: SOLUTION IN THREE DIMENSIONS

We have been able to find a closed analytic solution in
quite similar to the one we have presented for the bidim
sional case, only that we do not have simulations to comp
with. We have chosen hard walls parallel to theXY plane
moving with velocities6v0 in the X direction. The only
coordinate that plays an interesting role is thez. From the
balance equations and symmetry of the problem we h
derived thatqy50, Pxy50, Pyz50 while Pxz andPzz are
uniform. Again we are able to see that Grad’s solution yie
a uniform shear rate.

The shear viscosity normalized to the ideal gas case tu
out to be

h

h0
52

2

11
12

25
g21

1

5
AD3

512
72

25
g21

1356

125
g41•••,

~A1!

whereD35251144g2248g4.
The thermal conductivity coefficients can be expressed

terms of the ratio

Pxz

Pzz
52

2g

11
12

25
g21

1

5
AD3

~A2!

52g1
42

25
g32

672

125
g51•••

~A3!

and they are

kzz
k0

5
12~16g/25!~Pxz /Pzz!

12
56

25
g2

511
72

25
g21

672

125
g41•••, ~A4!

kxz
k0

5
7

5

22g1S 12
24

25
g2D ~Pxz /Pzz!

12
56

25
g2

52
21

5
g2

714

125
g32

14 412

628
g5
•••. ~A5!

The temperature profile again satisfies the same equa
~25! as in the bidimensional case and therefore has the s

-
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formal solution~26!, the difference being in the form of th
constant that we now callK3,

A2K35
8

5
A10p

7

11
72

25
g21

1

5
AD3

11
12

25
g21

1

5
AD3

3 A212
44

25
g21

1

5
AD3 s2Pzz. ~A6!
-

H

One of the integral boundary conditions is again Eq.~29!
while the other takes the form

ATmax2T0

T0
5

g0

B
4

5A10p

1

A11
44

25
g21

1

5
D3

~A7!

5
2g0A5
25BAp

S 12
29

25
g21

4119

1250
g41••• D .

~A8!
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