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Dilute gas Couette flow: Theory and molecular dynamics simulation
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Explicit analytic nonlinear laws of heat transport and of viscous flow are derived from Grad's approximate
solution of Boltzmann’s equation and they are shown to describe quite well the observations made in molecular
dynamics simulations. With this aim a planar Couette flow is studied analytically and by means of microscopic
molecular dynamics techniques for the case of a bidimensional gas of hard disks. The fluid develops a
nonuniform temperature profile, shows a non-Newtonian behavior, and there is a heat current which obeys
Fourier's law with a tensorial shear rate-dependent thermal conducfigity263-651X97)07507-1

PACS numbgs): 05.20.Dd, 47.50td, 51.10+y

I. INTRODUCTION version of Navier-Stokes equations withnear transport
equationsand explicit expressions for the transport coeffi-

Transport in dilute systems far from equilibrium is not a cients[1,2]. The BGK approximation3] deals with a kinetic
simple hydrodynamic problem. Even though the Navier-equation where Boltzmann's collisional operator has been
Stokes equations are the main tool to study the hydrodyteplaced by a simpler ond[ff]—nv (fe—f) and it has
namic behavior of fluids, behind these equations is the basigeen used to deal with the problem at stake as we comment
assumption that changes in a fluid take place smoothly an@elow.
slowly so that the system can be considered in a state of local Grad’s method4] uses a self-consistent approach involv-
thermodynamic equilibrium and the transport of momentuming higher momenta and no gradients of them. In particular,
and energy in it is described by linear constitutive equationé3rad worked out in detail the case when the distribution
(Newton’s and Fourier’s lawswhich relate the gradients of function f is written in terms ofn, v, T, and also the trace-
the standard hydrodynamic variabléerces with the mo-  less and symmetric part of the pressure tenspr and the
mentum and heat f|UX vectors. When the Condition Of Smooﬂheat ﬂux Vector(i_ From Grad’s method non"near transport

or slow variation is not fU”y satisfied the fluid behavior may equations emerge natura”y_ In connection with genera“zed
deviate from the prediCtionS of standard hydrOdynamiC Cal‘hydrodynamics Seé5,6]_ For a Comparison with phenom_
culations: the linear relation between therces and the  enological derivations in the case of higher order corrections
fluxes breaks down and the constitutive equations have to bg the Navier-Stokes equations J&@.

extended beyond the linear regime. Presently it is possible to get semiexperimental results

Kinetic theory, on the other hand, gives a more funda<rom microscopic computational simulations usimplecu-
mental theory but it has been well dEVEIODEd Only for- rathellar dynamics(MD) techniques in which the microscopic in-
dilute systems where Boltzmann(er Enskog's equation teractions are part of the data and they are not bound to being
can be justified. The fundamental equation is that of Liou-realistic. MD simulations—in the sense of this paper—are a
Vi”e or eqUiVaIentIy the BOgOliubOV-BOI‘n-Green-KirkWOOd- Computationa| technique Wh|Ch traces the microscomw_
Yvon (BBGKY) hierarchy of equations for partial distribu- tonjan time evolution of a system df classical particles in
tions. the phase space of all of them.

Within the range of validity of Boltzmann’'s equation, the  pmp gives extra meaning to another fundamental ap-
challenge is to find approximate solutions. Boltzmann’sproach: the linear response Green-Kubo metf@d method
equation is complex enough that it is not obvious whichfrom now on for the calculation of transport coefficients as
approximate scheme should be us€l: Chapman-Enskog time integrals of time correlation functions of certain micro-
method is perhaps the one most widely uséd) the  scopic current§8]. With the advent of computational phys-
Bhatnagar-Groos-KrooKBGK) approximation that, in a jcs it became possible to apply the GK method to obtain
way, linearizes Boltzmann's equation modifying the colli- estimates of the transport coefficients for particular interac-
sion operator, of3) Grad’s momentum expansion method. tion laws. Simulations and these calculations led not only to

The Chapman-Enskog method is an expansion abouhe conviction that there are long time tails of the GK time
equilibrium in gradients of the hydrodynamic fields: density correlation functions implying thedivergence of the GK
n, velocity v, and temperatur&. The first order gives Eul- transport coefficients in two dimensiof@D) but also, for
er’s ideal hydrodynamics and the second order provides the 3D case, to numerous specific results for self-diffusion,

mutual diffusion, bulk and shear viscosity, and thermal con-

ductivity of model gases and liquids, forming an important
*Electronic address: drisso@alihven.ciencias.ubiobio.cl basis for the dominant interpretation of both the theory and
Electronic address: pcordero@tamarugo.cec.uchile.cl phenomenology of transport.
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In particular, the divergence of the 2D transport coeffi-form. In particular, we have derived the density, velocity,
cients has been widely acceptg®]. They are expected to and temperature fields as well as explicit forms for the pres-
diverge because the corresponding correlation integrals agure tensor field and the heat current.
believed to decay in 2D &(1/t). On the other hand, recent With all this information we have been able to derive
high precision simulations as ifl0—14 for short range effective shear-dependent analytic expressions for the viscos-
steep repulsive potentighard disks in[14]) produced what ity and thermal conductivity coefficients. In_par;icular, we
looks like size-independent transport coefficients fairly closeShow that the observed heat current vector is fairly well de-
to the predictions derived from the 2D Enskog theft§). scribed by our analytic results and the pressure tensor shows
No divergence is detected. The reproducible finite nature o €xcellent agreement between theory and observations.
viscosity in [10—12 and thermal conductivity if13,14] Our simulations were done with our own algorithms as de-

could be made understandable if the coefficients give indicaSCTiPed in[18] and using the precise measurement routines

. au . " described ir[19].
f th f | hat the | . .
tions of their dlvergence or systems SO arget at the limit i1s We have aIready reported simulations of sheadedse

beyond present computational possibilities. Certainly the G . L .
derivation of divergence fails to hold fdimite systemsvith Iﬁ:ard disk f.wa:,is |r{19,2q. .m them too a non-Newtonian and
non-Fourier” behavior is observed in the sense, for ex-

finite steady state nonequilibrium fluxes. One should find a . .
bridge from finite to infinite systems, a goal that is beyondample' that a heat flux not orthogonal to the isotherms is
our present scope. observed. " . . .

The Couette flow of a dilute system of Maxwell particles In Sec. Il the condlt_|ons gnder W.h'Ch thg simulations were
under strong strain has been studied theoretically using th erfo,r med are descrllbed in detail. Seg:qon ”.I descnbgs
BKG equation[16,17). In [16] the momentum flux turns out rad’'s general formalism and nexj[ specializes it to the Igm|-
to be a nonanalytic function of the shear rate and the hedt&! Couette _ﬂOW under study, getting a set of coupled d|ffe_r-
current obeys a Fourier law with a conductivity that depend:s‘entlal equations for the shear rate, the temperature profile,
on the shear rate as well. [A7] the authors introduce an and Fhe two compqnents .Of the hgat flux.. . f|_nd the
external nonconservative force that creates the heat qux°t0|u“On of t.hese dlffergnual equations Wh'Ch. show, in par-
There is no temperature gradient, a drag force is included tchIar, nonlinear equations .for heat conducUon and Of'VIS-
preserve the stationary state and it is shown that shear affect§4S ﬂOW' In Sec. IV there_ is a comparison of the previous
the heat flux. The authors present explicit expressions for th eory with the observed simulated system.
shear-dependent thermal conductivity tensor. The off-
diagonal terms imply a component of the heat current normal
to the temperature gradient as a second order effect not The system of hard disks, of mass is inside anL X L
present in the linear constitutive hydrodynamic equations. square box. The vertical wallG@long theY direction are

We have performed MD simulations of a planar bidimen-treated as periodic boundaries, the collisions among particles
sional Couette flow for a system of hard disks between tware perfectly elastic, and the collisions with the hard horizon-
flat parallel walls that move with velocities, and —vg,  tal walls (along theX direction are such that they impose a
respectively. Particles obey straight Newtonian dynamicsemperaturd, on the fluid as well as a velocity, at the top
and, in particular, the production of heat is only dissipatedwall and— v, at the bottom wall. To do that the velocities of
through the moving walls which are kept at a fixed temperathe particles after each hard wall collision are chosen from a
ture To. Careful local measurements of the hydrodynamicvebcity distributionf(E)ocexp{—(nVZTo)[(cxiv0)2+cz]}.
fields show that our system of hard disks does not obey,are ang in the following temperature is measured in energy
linear transport equations. Because the system heats up at thei« <5 that Boltzmann's constant kg=1. The origin is
center of the Couette channel we observe, as expected, 2 N@@lysen in the middle of the channel so that the coordinate
flux with a component perpendicular to the walls which ac- varies from—L/2 to L/2.
counts for the heat being dissipated through the walls. Bu¥ The control parameters of the simulations were the num-

we also observe ngitudinal heat current, namely, a heat ber of particlesN = 2539 orN=7680,u,, and the bulk num-
current parallel t'o the iso.therms. ; _ber densityn = N/L2. The tangential ,vel,ocit of the upper
The aim of this paper is to show that there is an approxi- n : 9 Yo PP

mate nonlinear explicit analytic answer to the problem of2"d lower walls was in the range,=0.25/To/m to

momentum and heat transport in the context of a planar Cout28.0/To/m. i i
ette flow. This answer is then validated comparing the ana- [N every simulation the system was relaxed for about 20
lytic results with our MD simulations for the gas of hard thermal diffusion times;; before local time averages of the
disks. main momenta of the distributiom(v,T,p;; ,q ) were taken,
What we have done is to apply the hydrodynamic equain some cases for as long as 40Qp. The order of magni-
tions that stem from Grad’s formalism to solve Boltzmann'stude of ty; comes from the energy balancej;~L?/ kq
equation without making any further approximations. Grad’swhere  is taken to be the ideal gas thermal diffusivity. In
formalism adds to the standard hydrodynamic balance equane t % each particle suffers about 100 particle collisions
tions of mass, momentum, and energy, extra balance equatenN=2539 and about 300 whex=7680.
tions associated to the pressure tensor and the heat current.One has to bear in mind though that, for finite systems
These extra dynamical equations are nonlinear and take thgch as the present one, there are velocity and temperature
place of the usual constitutive transport equations. For th@umps which cannot be neglected, implying that the limits of
planar stationary Couette flow of hard disks we have beef(y) andv,(y) asy— =L/2 do not give exactly the values
able to integrate this set of dynamic equations in a closeexternally imposed.

Il. THE SYSTEM AND SIMULATIONAL CONDITIONS
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Calling o the diameter of the disks, the bulk density dard hydrodynamics equations: the mass, momentum, and
n= 4p,lmo? was fixed so that the fraction of area covered€nergy balance equations. The balance equations associated
by the disks was 1%area densityp,=0.01). With this O the following momenta lead to equations that take the
choice the nonideal corrections to the equation of state arlace of the constitutive equations but, strictly speaking, they
less than 2%. are dynamic equations fqu;; andq.

Throughout this paper some quantities will play a particu- We have reconstructed Grad's derivation of these extra
larly important role, among them the free flight timethe  approximate equations, for the bidimensional case of a gas of
adimensional shear ratg, an adimensional measure of the hard disks, obtaining
range of the wall effectsl3, and a small adimensional pa-
rametery, (the externally imposed adimensional shede-  dp;; d 1/4q; Jq; Ik ;i
fined in such a way that it would coincide withif the strain gt +(9_Xk(”kpii)+§(5_xj +F7_Xi — A (p_xk) Prj X,
were small and uniformu;~0),

N v s o"vs+ &vi+z9vj 5 av, +1
1 mT(y) Prigx, ~ %iiPrs gy TP ax;  ax; 1 ax, 7 Pi
7'()/)_ ’ (1)
20p(y) ™ —0 R
Y(y)=7(y)vi(y), @ nd
B:f: V2 , @ Y%, (Bav  Lave  Lov T P
L 8ypaN 3 0_Xr(vqu) 2% 92 o 9T ox T ax
1 d T Py IPs g T 1
2 BRI ) 2 qg.=
2 Muo +?’p'“ﬁxrm p OXs +2p(9xk m 2, %=0, ®

_2()0 7'0_48 2
L T To

4
where 7 was defined in Eq(1) and p is the hydrostatic
wherep is the hydrostatic pressure, the ideal gas mean pressure. The. hydrodynamic equations for the dilute 2D sys-
free path/ = mr/8\/§p 7o the strain-free mean free flight tgm of hard disks correspond t(.) the stand_ar_d balancg equa-
Ar 70 tions plus Eqs(7) and(8). In the final results it is convenient

time, 7o=1/(20n) ym/(7T,), and the prime indicates de- {5 replace p; in favor of the complete pressure tensor
rivative with respect toy. Most of our results are presented Py =pij+PJ; -
for situations wherey~0.06. As an illustration of their use consider the first equation.

The number of disks was chosen so thas small enough  Neglecting time variations and all gradients except for the
to keep the boundary effects constrained to a small fraCt'OK}elocity gradient yields

of the system and guarantee that far from the walls the fluid

has a hydrodynamic behavior. For our choige=0.01, this dvi v, v,

implies B=0.062, L =446.6r for N=2539 andB=0.036, Pi==m0 | o "o " o Sij | » 9
L=776.70 for N=7680. ! ! r

where the shear viscosity, for hard disks isrp which can

lll. BALANCE EQUATIONS be reduced, using Eq(l), to the standard expression

AND BOUNDARY CONDITIONS 170=(1/20)\mT/7r. In a similar fashion one can find, from
A. General theoretical framework Eg. (8), the expression for the thermal conductivity
For two dimensional dilute gases Grad’s distribution is ko=4rp/m.
tien=l1+ C? e 9+1 & ) . B. The laminar flow case
r.c,t)= —[ | —=—— -q+=p: , N ) .
nT?[\ 4T 2 0 Under conditions of laminar Couette flux and after times

much larger thamg; the system is in a stationary regime and
- ) the flux presents translation invariance along the Couette
whereq is the heat flux vectorp is the traceless and sym- cnannel. All quantities of interest are either uniform or they
metric part of the pressure tensor, aiyds Maxwell's local  gepend solely on the transversal coordinat@he hydrody-
equilibrium distribution namic velocity has a unique nonvanishing component
o am % mc2 v4(y). The mass balance equation is identically satisfied.

fo(r.C,t)= exqd — , (6) To compare our simulational results with theory the fol-
27T 2T lowing considerations are madgé) Grad's solution cannot

. .. be expected to be valid near the boundarigs- {-L/2),

c is the microscopic velocityy(r,t) is the hydrodynamic where the interaction with the walls plays an important dis-

velocity, andé(F,t)zE— J(F,t) is the peculiar velocity. torting role, particularly at low densitie$i) Assuming that
From Boltzmann’'s equation it is possible to derive bal-Grad’s solution gives the correct behavior for the system in

ance equations for the momenta of the distribution as a texthe bulk, the expressions should reproduce the simulational

book exercis¢21]. The first momenta give rise to the stan- results using corrected values fog and T,
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P,y and P, are uniform. Hence, the balance equati¢is
for P, and Py, yield two algebraic relations,

3
p(y)= Pyy_ 2 y(y) ny ;

wherey(y) is the adimensional shear rate defined in @g.

The rest of the balance equations yield

7 !
EQX:

DINO RISSO AND PATRICIO CORDERO 56
From the momentum balance equation it follows that both : : : : : : : : |
sim. <
theor. - -
0.08 |- i
° o 5 © ©
R R I R R R R R R R CRR v
Pux(Y) = Pyy_ 3y(y) ny ) 0.06 - .
(10
0.04 |- -
0.02 - i
— ny— ’yPyy, (ll) 0 | { | | t t | | |
¢ 01 02 03 04 05 06 07 08 09 1
y/L
(12 FIG. 1. Profile of the shear rate for a system withN= 7680,

67 ,
qx+37qy: - pryT )

37 T
YAx+ay=— pryT?’, _E(4Pyy+37ny) T, (13

Tq)I,Z —¥Pyy.

The primes indicate derivatives with respecttorhe above

(14

system of equations has as unknowns the fieldsq,.,qy .

The boundary conditions are

T(xL/2)=Ty, q(0)=0,

ay(0)=0

plus two integral conditions, one that follows simply from

(15

pa=0.01, andvy=1.4yTy/m. The horizontal line represents the
theoretical valuey=0.066 869 0.000 062 explained in the main
text. Away from the walls the discrepancy is about 0.9%.

in the bulk of the system were uniform. The conclusion then
is that within the theoretical picture constructed from Grad’s
2D eight momentum distribution functig®) (for the bulk of
the systenit is reasonable to assume thhé shear ratey is
uniform The nonuniformity observed in Fig. 1, when the
externally imposed strain is high, may be due to boundary
effects and not to a deviation of the theory in the bulk where
Grad'’s distribution should be good.

Regarding the last point it is necessary to bear in mind

fn dx dy=N and the second that states that the velocitiethat Grad's approximate solutiof®) neglects the contribu-

*v, at the boundaries are known,

L2 ply) N Lz y(y)
f—L/zT(y) dy_'— and f—leT(Y)

dy: 2U0.

The ideal gas equation of stafes=nT, was used in the first

(16)

tion from higher momenta which will become important if
the shear rate is sufficiently large. The higher balance equa-
tions (7) and (8) are implications of Grad’s solution where
again the contributions from higher momenta are consis-
tently dropped. We have not worked out the necessary for-
malism to estimate up to which value of the shear rate the

integral expression while in the last expression the integrang@iresent approximation should be expected to be valid.

iSvy.

C. Expansions

The Reynolds number RevgL/vy, whereyy is the ideal
gas kinematic viscosity, reduces in the present case to
8paNvy which for the typical values we use amounts to Re
up to 20 N=2539) and up to 60 N=7680). However,

At. first glance one cannot hopg to finq a closgd analyticjnce for fixed values o, and T, the variablesy, or y get
solution to the above system of differential equations theregmier for larger systems the higher order corrections would

fore we expand in terms of, defined in Eq.(4),

YY) = Yo+ Yans(y)+ vams(y)+ - - -.

There is a symmetry related to inverting the signvgf(or
Y Or yp). Itis easy to see thdt, q,, andP,, have to be even
in yo while g, and P, have to be odd functions of.

7

be important only for not too largll but, according to Eq.
(17), y~O(1/yN), implying the Reynolds number increases
as N with N.

D. Closed solution when the shear rate is uniform

First we are going to derive expressions where the coor-

Sinceqy vanishes for zero strain its expansion begins Withdinatey does not appear explicitly. They are obtained by

2

a termO( ). Similarly, sinceT’ vanishes for zero strain  gimple algebraic manipulations of our equations after the

then T=T,+ O(y3). From this and Eq(12) it follows that
0y is O(»3). Finally since for zero strain the component

term v’ has been erased.
Since v does not depend on both Eqgs.(12) and (13)

P,y coincides with the hydrostatic pressure and the pressureave right hand sides proportional +oT" with constant co-

is nT then the formP,,=nT,+O(»3) is used.

efficients. From Eq(12) follows an expression fof’ which

With all the above considerations we have solved the sysis replaced in Eq(13) to get an expression fay, propor-
tem of equations and their boundary conditions in a consistional toq, . Thisq is used in Eq(11) to get an expression

tent way using expansions up tyzg All the algebraic ma-

nipulations were done using the symbolic languageLE.
To our surprise the coefficientg, that appear in the expan- P, is replaced back in the expression fy an expression
sion of y turn out to beindependent of was if the shear rate for the ratio between the two components of the heat

for g,* which is equated to the expression &jrin Eq. (14).
The result is an algebraic expression Ry, /Py, and if this



56 DILUTE GAS COUETTE FLOW: THEORY AND . .. 493

current follows. The two ratios turn out to be then Eqgs(12) and(13) imply that both heat currenty, are
proportional to T%?)’. Hence both Eqg11) and(14) imply

Py _ 4+3y°- ‘/— +2 3. .. (18) that T(T*?" is a constant and an expression for the tem-
Py, 3(4- 372)7 YT ' perature profile is easily obtained.
A2 1
Ax :_M~_2+972_1_35y4+.._, T+ ST'24K=0, (25)
Yy  4-3y%+A 2 4

(19 which can be integrated for in terms ofT,
whereA =16+ 120y°— 63y*. Observe that Eq.19) implies - —
that there is a heat flux curreg alongthe Couette channel. _ max_ max—
For shears as small ag=0.065 Eq.(19) predicts a heat =V2Ky=T T T Tmadrcta
current which can be as large as 30% the size of the trans- (26)
versal heat currerd, , as indeed is observed in our simula-
tions described in the next section. where

(@) Shear viscosityFrom the expression fd?,, /P, and
p=Py,— gnyy it is direct to obtain that the shear viscosity JoK \/8174—26472+ 16+ (15y°+4) \/K\/— 5
= OYFyy

n=—P, v is 4— 32
7 8 15 , 297 3 9 _ 27
12 T (20 T gy SR N T
7 157+a+\h - 47 167 20 T Y R Ty

is real in the interval & y><%. The + on the left hand

ide of EqQ.(26) is natural because the symmetry of the sys-
em implies that under laminar conditions the temperatures at
y and —y are the same. In practice to integrate E2p) we
imposed that at the center of the chaniéD)=T,.. and
(dT/dy)y-o=0 even though we do not know yet the value
of Thax- In Fig. 2 there is a comparison of the observed

above predicts an effective shear thinning which is compare
with our observations in Fig. 4. The agreement is excellen
as we show in the next section.

(b) Thermal conductivity tensoOnce the term withy’
was eliminated from Eq(13), the use of that equation and
Eq. (12) directly leads to expressions

where 7y was already defined below E(®). The expression gﬂ

Gy=—ky T' and g=—k, T, (21)  Vvalues of " and the corresponding profiles obtained from
the above expressions. Comments are deferred to Sec. IV.
with What remains now is to connect the uniform fieldlg
Tmax,» @and+y with the control parameteis, and T, (or rather
1—5 ¥Pyy/Pyy to adimensional parameteyg and3) and the parameters of
kyy:T&Q_ 0 the system §,,0,L,N, .. .).
(d) Using the integral boundary condition&rom the
and knowledge ofT(y) it is quite easy to actually make the in-
tegrals that appear in the integral boundary conditions, for
—3y+(3Py/2P,) (1 ) example,/dy/T=4/\2K arctan/(T nax— To)/ To.
Kyy= 1-3,2 Ko (22 The two integral boundary conditiori&6) combined ren-

d
but since the ratid®,,/P,, was already determined in Eq.

er
(18) it follows that [Toax—To J— 70 | 1-3%#
To 4+9y°+ \/_

Ky _ i 1422 B 34 (23)
ko 4-332+ya 4V T8V T

Y0
—E?(l 3’y+4’}/+ (28)

Ky 97'—67°+8+(99°-2)yA 9 9

ko 48y2(1-399) 278" and

(24)
[ Tmax— TO_E t [Tmax— To o9
In the above results there appears no explicit dependence To v arcta To (29)

on the coordinatey. Notice, however, thaty, and k, are

proportional to yT(y). The problem of determining the Using Eq.(28) on both sides of Eq(29) one hasy as a

transport coefficients themselves has been reduced to detdunction of the external parameteyg and B. Fixing B one

mining 7y andk, and therefore to determining the tempera-can ploty as a function ofyy,. Once this is done Eq28)

ture profile. gives Tay in terms of Ty, 7y, and B. Since the previous
(c) The temperature profiléf we go back to the original equations are implicit such plots have to be constructed using

equations and notice that depends ory only through\T  numerical methods.
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limit corresponds to neglecting, in front of T, and Eg.

LR N:7680 (sim. i
04N Nnas ) 2~ (28) leads t0Tyar=imov2 and y— y..=(w/4)(L\2Npy)
" + (theor.) — suggesting that—for a given system fixed—vy does not
0.2 - Ty . g grow indefinitely. Qualitatively our simulational results sug-

‘ gest thaty saturates, see Table I. Understandably though, the
0 observed asymptotic value thatseems to have is not close
~ to the previousy,, .

02} + oy J From the conditionT(*=L/2)=T, follows an expression
+ . for Py, which can be reduced to

-0.4 - - 2

L L ! L ! I L ) P — NTO 4_37 / n E Tmax_ TO (30)
(a)»O.B -04 -03 -02 -0.1 y?L 0.1 0.2 0.3 0.4 0.5 yy L2 4_972+ \/K\ y —To .

I ' ‘ ' ' ':0 40'( im.) lé_ The expression forT,.— To)/To given in Eq.(28) can be
04 . 7=0.40 (sim. . ) L / .

(theor.) - - replaced in Eq(30) to have an explicit expression féx, in
7:0‘66(51';’;2) i terms of the shear ratg In the small shear rate limit the last

0.2 i

bracket tends to 2 and the middle fraction tends, tmaking
P,y tend to the hydrostatic pressupe=nT, as it should.
0 This expression oPy, in terms ofy can be replaced back in
Eq. (27) and get an expression faf2K.

0.2 + &L

IV. OBSERVATIONS VERSUS THEORY
04t
L . | | ; . , , A. Generalities and boundary effects
(b)‘O‘S 0403 02 0L 00102 03 04 05 To measure the hydrodynamic behavior of the system, the

box was divided inM, XM, rectangular cells. In each cell

FIG. 2. At top T'(y) for two systems withp,=0.01; the time average of the first momenta of the distribution was
N=2539, y= —0.063, andN=7680, y= —0.058. The theoretical Made. For the system witi=7680 particles the choice was
profile T’ for both cases are indistinguishable in this figure. TheMx=My= 20, which corresponds to about 19.2 disks per cell
smaller system clearly differs from the theoretical profile. At bot-and in the case wittN=2539 it wasM,=M =23 or about
tom two profilesT’ (y) for N="7680 but differenty. Away fromthe 4.8 disks per cell. Units are chosen so that the mass of each
walls theory and observations coincide. The temperature gradient garticle ism=1, their diameter isr=1 and time units such
scaled with the square root ok2 that the temperatur&€, at the horizontal walls, measured in

energy units Kg=1), is fixed to beTy=1.

When imui<T, (y—0) Eq. (28) leads to To measure the number densitythe hydrodynamic ve-
V(Tmax— To)/ To=~ \/;yol(88). On the other hand, the large locity v, and the temperature the algorithm carries in each
shear limit cannot be reliable since in the present approach d@ell an exact integration over time of the number of disks,
is being assumed that the shear rate is not too large. Still, thistal momentum, and total kinetic enerdgensities. To

TABLE I. Simulational values oP,,, P,,, andy versus the imposed tangential veloaity. In the third
column are the values of the shear rate obtained fron{E). The averages for the uniform quantities were
taken in the whole volume of the system. Thienulational value of y is an average over four values
measured at the central part of the fluid. The numbers in square brackets denote powers of 10.

Vo Pyy Pyy

m Y sim. v theor. TOTZ TOTZ
0.2 0.010285 0.010370 0.0001406[-11] 0.013511-6[ — 8]

0.8 0.040127 0.040437 0.00058@] — 6] 0.01439% 6] — 8]
1.0 0.049442 0.049547 0.000738[ — 6] 0.149180 1[ — 11]
1.4 0.066253 0.066869 0.001079] — 6] 0.016297-1[ — 7]
2.0 0.087807 0.088711 0.001668[ — 6] 0.019129- 5[ —7]
8.0 0.166661 0.169997 0.014282[ — 5] 0.088909- 1[ — 7]
16.0 0.184631 0.189379 0.050963[ — 5] 0.289465- 1] — 6]
32.0 0.192817 0.198525 0.193722 — 4] 1.056361 2[—6]
56.0 0.195729 0.202106 0.578586[ — 1] 3.107144 4] — 5]
128.0 0.199432 0.205384 2.966898 — 3] 15.71608 2 — 4]
256.0 0.201661 0.207323 11.69858 — 2] 61.47708 3[ — 4]
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measurecurrents namely, the pressure tensBy; and the 0.0015 . . ; . : : : —
heat currenﬁ, it is necessary to measure separately the ki- o
netic and the collisional contributions. The kinetic contribu- """ [ .+.-+"+ )
tions come from the fluxes using the peculiar velodlty 0.0005 |- o <
namely, the fluxesnG,C; and 3 mC*Cy that take place each PK.+-'Z R
time a disk enters or leaves a cell. Regarding the collisional *%% PP
contributions we estimate, using Gass'’s expressions for the .1 e . ]
transport coefficientf15] for hard disks(linear constitutive o T LA
equation$ that they will be of the order of 2%. o000 F 4t "yitjim‘ *oA
Most quantities show boundary effects. The temperature +--*'I . o
field shows isotherms parallel to the flow but—as predicted " 5 01 07 02 o1 o o1 o2 o5 o1 o5
by Eq.(19—the heat flux is not orthogonal to them: it bends v/

in the direction of the mass flow. The equation of state is , )

well satisfied across the fluid, including the regions near the. FIG. 3. The theoretical and observed profiles of the heat c.urrents
walls. Observed discrepancies with the ideal gas equatioft for a system of N=7680. The theoretical y is
were always below 2% and if Henderson’s equation of staté =0.066 ﬁegt 0.000 362' The transvers.'a;: hﬁat ﬁurrmt (Vt\]".:h h
[22] is used the discrepancies are below 0.1% for thecmsse’s shows excelent agreement with the theory, while the

= agreement between the theoretical and observed profiles of the lon-
N=7680 system. The componeritg, and Pyy of the pres- gitudinal heat curreng, (with rhombus is fair. Both currents are

sure tensor show no boundary effects By does. scaled with the factolg\To/m.

Taking advantage of the translation invariance in ¥e
direction, it was natural to t‘?"‘e honzontal averages of thecenter of the channel while in the third column is the effec-
observed cell results getting in this way smooth vertical pro-. . .
' g tive theoretical value ofy. Forvy<8 \/To/m the discrepan-
files for the observed hydrodynamic fields. .

. cies are less than 1%.

As mentioned above E(10), Py, and Py, should be Figure 1 shows the adjustedand the observed shear rate

uniform and this is what we in fact observe. From the hori-__'9 . )
_ : .~ profile. The figure corresponds to the cdde-7680 and

zontal averages d?,, andP,,, for N=2539 particles, their —1.4\Toim. A f th lls the adiusted val f
values at eacly are obtained with errors of less than 0.6% Y0~ o/M. Away from the walls the adjusted vaiue o

0 . is y=0.066 869 0.000 062 which differs from the ob-
:pr?)rlse Sef;rethsatri]lOé217aﬁ)érreZElegg\éiet:ghZlo\r/etzrr]t?c:rg?,rersay;éeg\l,éh%efved value in about 0.9%. Similar differences are obtained

each of the previous profiles produce a variance of abo ! Other values ob,. In the extreme case,=128yTo/m

0.1% for P.. and of about 0.008% foP.. whenN=2539 they profile is less uniform and the values in the central part
and smaller wheiN=7680. In this sense it can be stated that®" the box and border differ by about 4% and the difference

these two quantities are independentycdis hydrodynamics between th.e simulational value q(f)in the central zone and
predicts. In Table | we have summarized our results for thén€ theoretical value reaches a 3%.
system withN="7680 andp,=0.01. The constant/2K is evaluated from Eq27). _

Even though we derived that up to eighth orderjnthe  1he temperature J,, and T(y). Tra was obtained mak-
adimensional shear ratg is uniform, the simulations for Ng @& mean square fit of E@6) adjusting both the values of
shear rates as small as-0.06 show a wide region near the Tmax @nd again the value of/2K. Since the temperature
boundaries of the channel whese[evaluated through Egs. profile shows a strong and wide boundary effect different fits

1 . . . were made eliminating one, two, three, etc. points on each
ﬁcla)g;ig)zr?’ aigdgu_ité-rl:Ei]fgror:(::sézge\:]airflsii\glthly. In the central extreme and finally an extrapolation was made. The value for
Y L

From these considerations it is clear that the theoretic 2K obtained in this way differs from the one obtained from

. g. (27 by a few percent.
framework presented in Sec. Il needs a reassessment be-';, previous fit yields what we will be calling the theo-

cause, even though the differential equations are expected thical temperature profil@(y) from now on. It coincides

T oLy e e boundares. Tt the observed proe ony n the ceiral regon and
. P : exp Phils badly away from it. From the theoretical temperature
fit well away from the walls and the values associated to the

" : . profile T(y) follows its gradientT’(y). In Fig. 2 there is a
gfundary conditionsTo,vo) should be adjusted to make this comparison of the latter with the observed values. The

profile agrees quite well away from the walls when the sys-
) tem is larger N=7680).
B. Results fits The heat currents gand q,. Figure 3 compares the

To adjust the observed results we proceeded as followsobserved heat flux profiles with the theoretical profiles given

The shear ratey. Since bothP,, andP,, are independent in Eq.(21) for the caseN= 7680, y~0.067. Crosses indicate
of the coordinatey within a very small error, vertical aver- the simulational values of the transversal heat curcgnt
ages of these two quantities were taken and from them andlotice thatq,, as seen in Eq21), obeys a Fourier type of
Eq. (18) an effective value for the shear rajeis obtained. law with an effective conductivity that depends on the shear
The fourth and fifth columns of Table | show the measuredrate. The agreement with the predicted valueg,ois excel-
values ofP,y,, P,. In the second column is the value of lent. Rhombuses are used to show the component of the heat
v evaluated using Ed1) for the four values measured at the flux currentg, along the isotherms. It is seen that, in the last
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TABLE II. Simulational viscosityn/ 7, and conductivitiex,, /Ko, K,y /ko versus the simulationay for
the N=7680 system.

% y sim. 2 7o Key /Ko Kyy /Ko

0.2 0.010285 1.012652 —0.0318-0.014

0.8 0.040127 1.001918 —0.15570.007 0.9556:0.007
1.0 0.049442 0.993623 —0.1982-0.020 1.1196:0.040
1.4 0.066253 0.993362 —0.2699-0.006 1.0216:0.015
2.0 0.087807 0.981536 —0.3459-0.014 1.0566:0.040
8.0 0.166661 0.924016 —0.5360= 0.006 0.8534-0.005
16.0 0.184631 0.910397 —0.5599+ 0.003 0.8166:0.006
32.0 0.192817 0.905053 —0.5734=0.002 0.7995 0.005
56.0 0.195729 0.903687 —0.6248+0.027 0.85690.046
128.0 0.199432 0.898152 —0.5790+0.010 0.7887#0.008
256.0 0.201661 0.894963 —0.5782-0.008 0.785%0.004

case, the agreement is fair. Fde= 2359 theq, fit is rather The shear viscosityJsing the observed values of and

poor (the boundary effects propagate deeper into the S))Ster’rPXy at different points in the channel and in different simu-
and we did not make the corresponding plot. In general théations it is possible to extract a simulational value for the
boundary effects for a fixedy are seen to be smaller for shear viscosity ratiay/ 5, (see Table N which turns out to
larger systems as the definiti¢8) of B suggests. follow quite well the value given in Eq20) within less than

The integral boundary conditiong.o check the implica- 1% in a range ofy up to y=0.2 (see Fig. 4 We have not
tions of the integral boundary conditions we proceeded tenough data to derive error bars but all points are seen to fall
determine the value of that follows from Egs.(28) and  close to the theoretical curve.

(29). Taking the system wittN=7680,v,=1.0yTy/m and The thermal conductivity coefficientSimilarly, the ob-
using forT, the value obtained from the theoretical profile, served components of the thermal conductivity tensor are
we obtainy=0.049 537 8 while the value of derived from compared with the expression implied by E(&3) and(24).
Pyy/Pyy is ¥y=0.049 546 8 which is better than what one From the observed values fag, q,, andT' we have de-
could expect. rived profiles for the conductivities k,,=—q,/T’,

In the case of smally, the expressiori28) predicts via k,,=—q,/T" after eliminating two or three data points from
Egs. (3) and (4 a temperature differencel o« Tg  the borders and four noisy points from the central part where
~(7164)To(vo/B)?, implying that, becausB is small, there T',dx,qy are too small. An extrapolation of the profiles of
is a significant heating of the central part of the channel. Irk,,/k, andk,,/kq, at y=0 using a parabolic fit yields the
particular, for the case/~0.049 54(which corresponds to simulational values presented in Table Il for different values
vo=1.4/To/m) Eq. (28 predicts {[Tma— To)/To~0.125 of the simulationaly.
while we observe 0.2 and foy~0.066 25 (which corre- For ky, /Ko the agreement is quite good ifh<2yTy/m
sponds taw,=1.0yTo/m) Eq. (28) predicts 0.245 while we (y<0.087 807) wheiN="7680(see Fig. % Fork,,/k, (see
observe 0.29. The discrepancies may be due to boundafyig. 6) the statistics are rather poor. The results show a be-

effects. havior consistent with the theory for small values of the
1.2 T T T T 0 P T T T T T
sim. Ko— ] sim. Ko
o8 e 6 e .. theor. -~ -~ | -0.1 . o theor.
BRGRE 2N N 02 P 8

08 |- . @

03| - -

&

0.6 I - 04 F B _

05 - -
0.4 . . SN

06 ' °® .
0.2 | : :

07 =
00 1 1 L 1 "08 I 1 1 [ L

0.05 0.10 0.15 0.20 0.25 0.00 0.05 0.10 0.15 0.20 0.25 0.30

FIG. 4. The predicted viscosity ratig/ 7y, versusy showing FIG. 5. The predicted,, /k, conductivity ratio versuy is com-

shear thinning, is compared with the viscosity ratio derived directlypared with the conductivity ratio derived directly from the observa-
from the observationsN=7680). tions (N=7680).
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2.0 . : : : : APPENDIX: SOLUTION IN THREE DIMENSIONS
L8 Sm. 1O We have been able to find a closed analytic solution in 3D
1.6 : quite similar to the one we have presented for the bidimen-
141 ] sional case, only that we do not have simulations to compare
Lok R with. We have chosen hard walls parallel to tk¥ plane

¢ Do moving with velocities=uv in the X direction. The only
LOp g @ . ; : ; .

o coordinate that plays an interesting role is theFrom the
08 «& ] balance equations and symmetry of the problem we have
061 g derived thatq,=0, P,,=0, P,,=0 while P,, and P,, are
04 F - uniform. Again we are able to see that Grad’s solution yields
02 L J a uniform shear rate.
00 | , , , , The shear viscosity normalized to the ideal gas case turns
0.00 0.0 0.10 0.15 0.20 0.25 0.30 out to be
FIG. 6. The predicted,, /k, conductivity ratio versuy is com-
pared with the conductivity ratio derived directly from the observa- 5, 2 72 1356
tions (N=7680). —— =1 — Y+ — Y+,
70 12 , 1 25 125
1+ 2—5’)/ "rg A3
(A1)

shear rate, but we do not have enough data to make stronger
statements.
Our data are less noisy when the shear rate gets larg@fhere A ;= 25+ 144y%—48y*.

(vo>2.0yTy/m) butin that case the discrepancy with theory  The thermal conductivity coefficients can be expressed in
is substantial both fok,, andk,,. There are many possible terms of the ratio

sources for these discrepancies. The higher balance equations

(7) and(8) are derived, according to Grad, neglecting terms

that involve still higher momenta which possibly are no Py, 2y

longer negligible at such high shear rates. The boundary ef- P.. T 12 1 __ (A2)
fects, on the other hand, are also more complex since the 1+ —'y2+—\/A—3

discontinuities of the hydrodynamic fields at the walls are 25 S
related to their own gradients. This seems particularly rel-
evant in the case of the temperature field.

In summary, we have used Grad’s momentum to derive, s 42 , 672 5.
from Boltzmann's equation, a hydrodynamics for the gas of YT Y Ty T
hard particles. This hydrodynamics comprises the standard (A3)

hydrodynamic equations plus dynamic equations for the

pressure tensor and the heat current. Hence the only consti-

tutive equation is the equation of state. When applying thesand they are
equations to the case of a planar Couette laminar flow we

find a closed solution which includes the description of non-

trivial temperature profile, heat flow both orthogonal to and kzz 1—(16y/25)(Py,/P,,)
along the isotherms. The solution is in general an excellent k_0= 56
description of what is actually seen, away from the walls, in 1- 2—572
our molecular dynamics simulations with systems of less
than 10 particles subjected to extreme shear conditions. In 72, 672,
particular, we have found closed analytic expressions for the =1+ 257 +ﬁ57 LI (A4)
effective nonlinear transport coefficients for this planar Cou-
ette flow.
K 7 —2y+ 1_%72) (Pxz/P22)
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formal solution(26), the difference being in the form of the

constant that we now caK s,

g \/\1+ 5'y+\/—

1+—y += \/_

X \/ 1——7+ \/—30' P,,. (AB)
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One of the integral boundary conditions is again E£9)

while the other takes the form

TmaTo_Y0 4 1 a7
To B 5\10x \/ 44 1
1+ 2—5’)/ + A3
2v0\5 29 2, 4119
253\/_( ESY 12507
(A8)
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